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Abstract

The simplest strategy in Java just-in-time (JIT) com-
pilers is to compile each Java method the first time it
is called. However, better performance can often be ob-
tained by selectively compiling methods based on heuris-
tics of how often they are likely to be called during
the rest of the program’s execution. Various heuristics
are examined when used as part of the Caldera UNIX
Java JIT compiler. The simplest heuristics involving the
number of times the method has executed so far and the
size of the method prove to be the most effective, with
more complicated heuristics not providing much or any
additional benefit.
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1 Introduction

A Java just-in-time (JIT) compiler is an optimization
component within Java virtual machines. Instead of
Java bytecodes being interpreted each time they are ex-
ecuted, the bytecodes are compiled to the underlying
machine code and from that point on the generated ma-
chine code is executed.

It follows from this scheme that there is a fundamental
tradeoff in JIT compilers. Compiling the bytecodes will
cost some appreciable amount of time, while executing
generated code instead of interpreting bytecode will pre-
sumably save some amount of time each subsequent time
the code executes. Depending upon the actual times in-

volved, the compilation of a given piece of bytecode may
or may not prove to be a net benefit over the course of
any given application’s run.

Decisions about whether to compile bytecodes are usu-
ally made on a per-method basis. The simplest JIT
compilation strategy is to compile every method the first
time it is called. More ambitious JIT strategies involve
selective compilation: some methods get compiled the
first time they are called, some methods get compiled
later, and some methods never get compiled at all.

Given the dynamic nature of the Java language and its
applications, it is usually not feasible to know ahead
of time how long methods will take to compile, exe-
cute interpretively, or execute as generated code. Thus
selective compilation decisions rely on heuristics about
whether compiling a method will likely result in a time
savings for that method.

The goal of the work described here is to see how the
addition of selective compilation heuristics can improve
the performance of a particular existing virtual machine
and JIT compiler.

2 Architecture of the JVM and JIT

This paper describes work done to the Java virtual ma-
chine in various versions of the Java Development Kit
and Java 2 Platform, Standard Edition for SCO and
Caldera UNIX Operating Systems.1

1Caldera acquired the UNIX business of SCO, Inc. in May
2001. Much of the work this paper describes was done while the
author was employed by SCO; for the purposes of this paper the
two companies may be considered as the same. On the Caldera
OpenLinux r© operating system, a different Java implementation
is used that is not discussed in this paper.



This Java implementation is based on the original, “clas-
sic VM” from Sun Microsystems, Inc., of which SCO
and Caldera have been source licensees. Except for the
JIT compiler, most of the rest of the Java virtual ma-
chine is a straight port of the classic VM, from the Sun
Solaris operating system for the Intel IA-32 architec-
ture, to the Open UNIX r© 8, UnixWare r© 7, and SCO

OpenServer
TM

5 operating systems for IA-32.

The JIT compiler described here is based upon sunwjit,
a JIT compiler for Solaris/IA-32 developed by a sepa-
rate product group within Sun and licensed by SCO and
Caldera.2

The sunwjit compiler is loaded and invoked per the JIT
Interface Specification [19]. When each Java class is
first loaded, initialization processing is done to get ready
for JIT usage. This includes setting up bits of “shim”
code to handle flow of control transitions among inter-
preted code, compiled code, and machine code. An in-
ternal JVM structure known as the “method block” has
its “invoker” field [5] set to point to the JIT compiler.
When a method in the class is to be compiled, the JIT
compiler gets control, translates the method’s bytecode
down to native IA-32 machine code, and then changes
the method block invoker field to point to the gener-
ated machine code. The call is then re-invoked, and on
this and subsequent invocations the generated machine
code executes instead of the bytecode interpreter. In a
multithreaded program, compilation may proceed con-
currently with execution (interpreted or compiled code)
in other parts of the program; only certain operations
pertaining to the class of the method being compiled are
locked out. This avoids some of the compilation ineffi-
ciencies described in [13].

Compiling of methods the first time they are called is
done unconditionally in the original Sun version of sun-
wjit. The only times methods are interpreted are if the
JIT is suppressed by a JVM command-line option, or if
the JIT has an internal error while compiling, or if the
method belongs to one of the primordial classes that
execute before the Java java.lang.Compiler class is
loaded. In the latter case, primordial methods will get
compiled the first time they are subsequently executed
after the JIT compiler is loaded. Class initializers, which
are known to execute at most once, are never compiled.
Methods that are never called are never compiled.

2The sunwjit JIT compiler also has a code generator for So-
laris/SPARC and was used by Sun with the classic VM on that
platform as well. Sun does not do further development work on
any version of sunwjit, concentrating instead on their successor
HotSpot JVM technology.

The code generator in sunwjit has two passes. The first
is architecture-independent and scans the bytecode for
basic block and stack state information. The second is
architecture-specific and generates the actual machine
code. There is no global optimization attempted, al-
though “lazy code generation” modeling of the bytecode
stack at compile time is performed in the manner of [5],
and various other local optimizations are done as well.
In general, sunwjit tries to do a decent but not great
code generation job, quickly. There is no ability to have
different levels of optimization performed.

Caldera has made a number of changes to sunwjit. Some
have been due to porting differences between Solaris
and the SCO/Caldera UNIX operating systems: signal
handling for trapping null reference checks, disassembly
logic for tracing through pre-JNI native method stubs,
probe techniques for detecting stack overflow, and so
on. Others have been due to bug fixes, especially for
race conditions in the dynamic code patching logic.

In addition, the infrastructure of the JIT has been mod-
ified to permit selective compilation, as described in the
remainder of this paper. This includes having the JIT be
able to read in and compile all of the “quick”-form byte-
codes [9] that are generated after methods have been
interpreted for the first time. This also includes hav-
ing the JIT’s exception handling and stack frame walk-
back logic handle the case where a recursively called
method has both interpreted and compiled instances on
the JVM’s internal stack frame structures at the same
time. These and other modifications become necessary
once any method may be interpreted an arbitrary num-
ber of times before it is compiled.

Finally, the JIT compiler sometimes detects unusual
bytecode situations that it cannot handle correctly, such
as empty loops and overflows of the IA-32 floating point
stack. In these cases, JIT compilation is abandoned,
and the JVM will continue to interpret the method each
time it is called. This approach avoids adding excessive
complexity to the JIT to handle rarely-encountered sit-
uations. It is also in accordance with the principle of
fail-safe optimization during compilation [15].

There are only two possible execution states within the
JVM for any particular execution of a method: it is ei-
ther fully interpreted or fully compiled (and for debug-
ging purposes either state can be forced on for a partic-
ular method by JVM invocation options). There are no
cases where compilation is started while the method is
being interpreted or where code has been compiled for
use but is then backed out and interpretation is resumed.
This “one or the other” nature simplifies the JVM and



times
no JIT always JIT heuristic

actual javac 7.19 8.38 6.77

Table 1: Early results with JIT

makes for easier reproducibility and debugging of prob-
lems; more aggressive JVM compilation strategies often
run into difficulties in this area [4, 14].

3 The Simple Heuristics

In early SCO Java Development Kit releases, the JIT
was used in the unmodified Sun mode of compiling every
method the first time it is called. This resulted in a per-
formance improvement for most applications, but there
were exceptions. Among the most notable and visible of
these was the javac compiler (written in Java and used
to compile Java source code to bytecode), which became
slower when run with the JIT on. A typical result (on a
Pentium II 266 MHz machine, 64M RAM, UnixWare 7)
in translating a modest source program that computes
the palindrome conjecture [22] would be 7.19 seconds
without the JIT3 and 8.38 seconds with the JIT, for a
16% slowdown. (Times are the sum of the UNIX timex

command user and system time.)

Since javac is most developers’ first exposure to Java
performance concerns, this was not the right direction
to be moving in! Also notably slow was the startup
time of many graphical applications. Not only does
such poor response annoy users, but it can also lead
to users changing their behavior regarding using the ap-
plication [11, 21]. Moreover, non-graphical server ap-
plication startup time can also be important, especially
when user-visible application interfaces are down await-
ing a re-start of their server component.

Thus a simple selective compilation heuristic was added
in the SCO JDK 1.1.7B release. If the user set a partic-
ular environment variable to some positive integer, no
method would be compiled until it had executed that
many times.

This is based on the idea that you only want to compile
methods that are likely to execute a good number of
times during the execution of the application (so as to
amortize the cost of compilation), and that the methods

3The interpreter used when the JIT is not on is implemented
in tightly-written assembly language.

that are most likely to execute a lot during the whole
application are those that have already been executing a
lot up until “now” in the application. This is a simplified
view of the heuristic described in [1].

As shown in Table 1, by running javac with the en-
vironment variable set to 40, the same translation ran
6.77 seconds, a speedup of 6% over no JIT and 19% over
always running the JIT.

This improvement scheme was limited, however, by not
being on by default. It required users to have to know
about the feature to make use of it and to have to ex-
periment by trial-and-error to get a somewhat optimal
value for the environment variable. So the next step was
to make selection compilation on by default and more
adaptable to the characteristics of individual methods.

Intuitively, one would think that besides the number of
times a method has executed so far in the application,
the other simple heuristic should be the size of a method
(as measured by the number of bytes of bytecode for
the method). On average, larger methods should take
longer to compile than smaller methods, and as a rule
larger methods should take longer to execute (whether
compiled or interpreted) than smaller methods. (We will
show later that this is not really the case, but still an
important factor.)

As a consequence, for example, you almost certainly do
not want to compile a small method that is only go-
ing to execute once, since the cost of compiling it will
well exceed the small amount of execution time gained,
whereas you almost certainly do want to compile a large
method that is going to execute many times, since the
cost of compilation will be more than made up for by the
larger amount of execution time gained over and over.
Whether you want to compile a large method that is
only going to execute a few times, or whether you want
to compile a small method that is going to execute many
times, is less clear.

Looking at the boundaries of this decision, there should
be some point where a method’s size is big enough that
you want to compile it, even if it will only execute once.
Similarly, there should be some point where if a method
executes that many times you want to compile it, even if
it is very small. These boundary points are shown in Fig-
ure 1, and are labeled JIT MIN SIZE and JIT MIN TIMES

respectively. The slope between these points is the “di-
viding line” of this decision guidance: to the left, the
cost of compilation outweighs the benefit and you do
not want to compile; to the right, the benefit outweighs
the cost, and you do want to compile.
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Figure 1: Selective compilation based on both method
size and times executed.

This heuristic is computed when the class is first loaded.
The JIT gets control to initialize itself for the whole
class (but not yet compile any methods). A counter
field in the method block is set to the number of times
the method should execute before it is compiled. Each
time the method executes, the modified JVM interpreter
decrements this counter; once it reaches zero, the JIT is
invoked to compile the method. This is similar to one of
the techniques used by the IBM JIT compiler [17, 18].

Experimentation with a variety of benchmarks and real
applications has been done to establish what these
boundary points are. The values of JIT MIN TIMES=40
and JIT MIN SIZE=150 seem to be best.4

4 Results of Simple Heuristics

The performance results in this section show test pro-
grams being run five ways: with no JIT at all; with un-
conditional compilation the first time a method is called;
with the default scheme combining the number of times
executed and size of a method as described in the previ-

4These values can be overridden by environment variables of
the same name, and sophisticated users can do so if they desire for
their specific application. Setting either to zero means compiling
methods unconditionally, and setting either to a huge value means
only using the other setting in deciding when to compile.

ous section and shown by Figure 1 (JIT MIN TIMES=40
and JIT MIN SIZE=150); with a heuristic that only uses
the number of times executed (JIT MIN TIMES=40) and
ignores the size of a method; and with a heuristic that
only uses the size of a method (JIT MIN SIZE=150) and
ignores the number of times executed.

Table 2 shows the results of the SPEC JVM98 bench-
marks [16].5 They are run using Java 2 Standard Edi-
tion version 1.3.0 on a dual processor Xeon 400 MHz
system, 512 MB RAM, UnixWare 7.1.1. The bench-
marks are run with the -s10 (medium) size, which is
sometimes used by researchers to represent short-lived
applications or the start-up time for longer-lived ones
[3]. Lower numbers are better.

The JVM98 results show that overall, unconditional
compilation is slightly better than the default heuristic,
which stands to reason for a benchmark that repeatedly
executes the same code. (“Repeated execution of code”
is not purely a benchmark artifice; it can occur in real,
long-running applications that achieve a steady state of
execution behavior.) The other three options fare poorly
on one or more of the tests; in the case of the heuristic
that ignores the size of a method, it is in methods that
do not repeat a lot that performance is lost.

To contrast with the effect of repeated execution, Table
3 shows a reprise of the times for a stand-alone invoca-
tion of the javac command (on the same source file as
used in Table 1 but on a different machine), this time as
part of Java 1.3.0 and with all five ways of running it.6

The javac results show that it is still the case that un-
conditional compilation can not only be worse than se-
lective compilation, but can also be worse than not com-
piling at all.7 The heuristic that doesn’t include size of
methods and the default heuristic are close together as
the best options.

Finally, Table 4 shows the start-up times of two longer-

5These results are run in batch mode as part of “Research Use”.
They do not follow the official SPEC run or reporting rules and
should not be treated as official SPEC results.

6Although javac is one of the benchmarks in SPEC JVM98,
this stand-alone use differs because it is a different Sun imple-
mentation, running on a different source program, and without
repeated execution. Also, javac is the JVM98 benchmark that for
some reason shows the most variation in timings from one run to
another, while stand-alone javac timings are much more stable.

7Actually, for very short-lived programs (e.g. execution of a
hello program, or even execution of the palindrome program for a
terminating integer such as 187), not compiling at all will produce
the best time of all these options. But optimizing programs that
take less than a second to execute is not usually a concern on this
platform.



(default)
times & size times-only size-only

no JIT always JIT heuristic heuristic heuristic
compress 41.66 5.69 6.08 33.46 6.87
jess 7.55 2.92 2.97 2.85 5.62
db 5.71 3.35 3.40 4.78 4.15
javac 7.34 4.37 5.00 4.56 8.65
mpegaudio 39.54 5.80 5.83 6.42 12.46
mtrt 11.93 5.62 5.47 5.48 11.48
jack 14.51 10.07 10.14 9.84 16.38

Table 2: SPEC JVM98 results.

(default)
times & size times-only size-only

no JIT always JIT heuristic heuristic heuristic
actual javac 3.07 3.47 2.90 2.88 3.14

Table 3: Later javac results.

lived applications. SwingSet2 is a Sun demonstration
program that brings up a graphical user interface il-
lustrating a large number of different Java Swing GUI
elements. Tarantella ObjectManager is a GUI for the
administration of the Tarantella application database.8

In both cases, the time is measured in wall clock seconds
from program start until the GUI is fully presented.

This attention to startup time is important for the psy-
chological reasons referred to earlier. It is also an area
ripe for optimization: one investigation found that on
average 77% of execution-time Java compilation over-
head occurs in the initial 10% of program execution [7].

These start-up time results again show that uncondi-
tional compilation can be a losing strategy, and that the
default heuristic and the heuristic that only uses times
executed are close together as the best choices.

So in sum, what do all of these results show?

• Not using the JIT at all gives bad performance for
all repeatedly executed code.

• Unconditional compilation gives inferior perfor-
mance for some short-lived applications and for the
start-up times of longer-lived applications.

• Picking methods to compile based purely on the
number of times executed gives bad performance
for some short-lived applications.

8Tarantella is an Internet infrastructure product that enables
web-based access to enterprise applications [20]. Tarantella, Inc.
used to be part of SCO, Inc.

• Picking methods to compile based purely on size
does not work well in any situation.

• The default scheme of combining number of times
executed with size of method works the best over-
all; it does not do badly in any of these different
situations.

Selective compiling during application start-up does
mean that some methods will get compiled later, dur-
ing normal application processing. Does this increase
response time or overall execution time? Experience
with interactive graphical applications has shown that
it does not: later compilations are interleaved with user
pauses. Running the long-lived SPEC JBB2000 bench-
mark [16] shows no significant difference between uncon-
ditional compilation and the default heuristic (the latter
is better by less than 1%; the other two JIT options are
worse, and no JIT at all is much worse).

Interestingly, some results of the selective compilation
heuristics were better in early-stage implementations
that were part of Java 1.2.2. This is probably because
there was more execution-intensive Java code in that
version of the Java tools and libraries (Sun made many
performance improvements in the tools and libraries in
Java 1.3.0), which gave more of an opportunity to im-
prove time with generated code where it was warranted
and also to save time from not compiling where it was
not warranted. Nevertheless, the ability to improve per-
formance of loose Java code is still important for user-
written applications, where there will typically be less
knowledge of how to write tight Java code.



(default)
times & size times-only size-only

no JIT always JIT heuristic heuristic heuristic
SwingSet2 23.6 24.2 21.6 21.8 27.2
Tarantella ObjectManager 22.7 20.6 16.7 16.3 24.8

Table 4: Start-up time results.

As a final note, it is not fruitful to compare these results
with those from other Java JIT compilers or Java virtual
machines, because overall performance differences often
derive from completely unrelated characteristics of the
underlying virtual machine or operating system (such
as threads and synchronization model, memory model,
and so forth), and the goal of this work was simply to
see the effects of selective compilation.

5 Profiling of JIT Behavior

In order to better understand some of the factors that go
into deciding when to compile methods, and how possi-
bly the selective compilation heuristics could be further
refined, the SCO/Caldera JVM and JIT were instru-
mented to report relevant profiling information. The in-
tent was to study and process the collected information
off-line, and not to make use of it as part of execution-
time decisions about when to compile (which, due to the
limitations described in this section, was not deemed fea-
sible). Therefore, the profiling mechanism did not have
to run fast itself, although it did have to perturb the
application to the least extent possible.

First an issue of timing accuracy had to be resolved.
The Sun JVM uses the Solaris gethrvtime() call to
get accurate timing information on a per-thread basis.
There is no equivalent to this call in SCO/Caldera op-
erating systems. Therefore the JVM timing primitives
were modified to access the IA-32 (Pentium processors
and later) RDTSC instruction to get the current clock cy-
cle count; relative times could be constructed from that,
once scaled for the machine’s processor speed. This pro-
vides timings with more than sufficient granularity, but
it counts everything that happens from point A to point
B, including context switches and time spent in other
threads, time spent in the operating system, etc. To
help reduce the effect of this, the measurements made
in this section were made while running under the classic
VM’s user-space, single-process, non-preemptive “green
threads” threads implementation mode, rather than un-
der the usual “native threads” mode. This prevents

any real concurrency from taking place, and allows most
method calls to complete without any context switching
taking place.

The next step was to record statistics of method calls
during the lifetime of a program. This was done both for
the case where every method is being interpreted (JIT
suppressed) and for the case where every method is be-
ing compiled. Recorded for every method call during the
lifetime of the program were: the size of the method, the
number of times the method is executed, the amount of
time it took to interpret the method, the amount of
time it took to compile the method (if and when that
happened), and the amount of time it took to execute
the generated code for the method once compiled. This
profiling was done by starting with the Sun HPROF
profiler agent, which follows the Java Virtual Machine
Profiler Interface (JVMPI). It has an ability to do CPU
time profiling by code instrumentation (rather than sta-
tistical sampling) [8].9 HPROF was then modified to
implement the JVMPI EVENT COMPILED METHOD LOAD ac-
tion, to record how long it takes to compile a method,
and by modifying the JVMPI EVENT METHOD ENTRY and
JVMPI EVENT METHOD EXIT actions, to record each
method’s time of execution. (These actions already
know how to adjust method timings for the time spent
in called methods and the time spent in garbage collec-
tion.10) Since the JVM interpreter and the JIT honor
the JVMPI, this captures method timings whether the
JIT is used or not.

At the end of JVM execution, these times are recorded
to an external file, which is processed by off-line UNIX
commands and scripts to produce, for each method used
in the program, the desired summary data.

So the first question to ask is, what is the relation-
ship between the size of a method’s bytecodes and the

9Statistical sampling is claimed more effective in somewhat dif-
ferent contexts in [3] and [18], but for the purposes of this inves-
tigation was too coarse.

10In practice, there were rare occasions where for unknown rea-
sons these adjustments produced negative times; these instances
were ignored. Also, sometimes the executed code timings pro-
duced an obvious outlier value for a particular invocation of a
method; these were adjusted to a reasonable time based on other
invocations.
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Figure 2: JIT compile time as a function of method size.

amount of time it takes the JIT to compile that method?
Figure 2 plots this, for a run of the javac application.
The two axes are in logarithmic scale, to collapse the
wide range of values recorded.

This data shows a reasonably linear relationship be-
tween the size of a method and the amount of time
it takes to compile it. The same graph for other test
programs, such as SPEC JVM98 or some graphical pro-
grams, shows a very similar pattern. This is what one
would expect for a compiler that does not do global op-
timization, and verifies an assumption made in [10].11

Next, we look at the relationship between the size of
a method and the amount of time it takes to execute
it. Again using a run of javac, Figure 3 plots this for
interpreted execution, and Figure 4 plots it for compiled
code execution.

In both cases there does not seem to be much of a rela-
tionship at all! (As before, a similar pattern shows for
other applications.)

Yet the results of the previous section show that over-
all, a heuristic based on both size and number of times
executed produces better results than a heuristic based
only on number of times executed. Why would this be?

11It does not look to be quadratic, as was found in a study of
preprocessed C compilation times that was being used as a proxy
for Java just-in-time compilation times in an early paper [13].
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Figure 3: JVM interpreted execution time as a function
of method size.
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Figure 4: JIT-compiled-code execution time as a func-
tion of method size.



The most likely answer is that while large-sized meth-
ods do not always take a correspondingly large amount
of time to execute, sometimes they do. If you compile
a method unnecessarily, the negative benefit is limited
to the time it takes to compile, which is a fixed amount.
But if you do not compile a large method that does not
execute frequently, but does take a long time to execute
(perhaps because there is a loop inside it that is exe-
cuted many times), then the negative benefit becomes
huge and is almost unlimited. In other words, the op-
portunity cost of the compilation decision is bounded
in one direction but effectively unbounded in the other
direction. Thus a selective compilation heuristic that
takes method size into account will be more effective
than one that does not.

6 More Complicated Heuristics

It is shown in [3] that predicting which methods to opti-
mize is much harder for short-running applications than
for longer-running applications. Accordingly, a variety
of more complicated heuristics were tried in an attempt
to make better predications.

6.1 The “jit when called by jitted” heuris-
tic

One idea is that once we have decided to compile
a method X, to then also immediately compile every
method that X calls. The theory is that this will take
advantage of locality of reference, in the sense that if
method X is getting used a lot, it is likely that the meth-
ods Y, Z, etc. that X calls will get used a lot too. Thus
we compile Y and Z right away and do not wait for
them to reach the point at which they would normally
be compiled (thereby saving the excess time that they
would be interpreted).

However, measurements of this scheme show that it
makes things worse, not better. The Tarantella Object-
Manager is 20% slower to start up, the SwingSet2 demo
is 21% slower to start up, and javac is 3% slower to run.
No tests run faster with it. This suggests that this kind
of “locality of reference” does not really exist.

6.2 The “Square decision” heuristic

Another idea is to change the shape of the when-to-
compile decision. Instead of interpolating a sloped line
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Figure 5: An alternative selective compilation heuristic
(not used).

between the JIT MIN TIMES and JIT MIN SIZE points,
as was shown in Figure 1, the decision could be either-
or: if a method exceeds the minimum size or (eventu-
ally) the minimum number of times to be executed, it is
compiled, otherwise it stays interpreted. The shape of
the graph would be a right angle, not a sloping line; see
Figure 5.

Measurements of this scheme against the default scheme
generally showed only slight variations on the SPEC
JVM98 benchmarks (± 1% or less, within the margin of
error), and it was 3% worse on Tarantella ObjectMan-
ager startup. Since intuitively this scheme is less flexible
than the default scheme, it was not further explored.

6.3 The “Backward branches” heuristic

Another idea is to try to identify backward branches
in methods, assuming that they are representative of
loops and likely hot spots in the code. Once identified,
the method would be compiled immediately, or at least
sooner than it would be otherwise. This heuristic is used
in the IBM JIT compiler [17].

However, implementing the heuristic in the
SCO/Caldera JIT proved difficult. The bytecode
could be scanned during the class loading and verifi-
cation phase, but given the internal structure of the
classic VM there was no good way to pass the result
to the JIT. Also, such a scan would potentially flag
backward branches in sections of code that rarely or
never execute.

So instead, backward branches were looked for during
actual interpretation of the method. As it happens, this
check is difficult and expensive to do in the optimized,
assembly language version of the classic VM interpreter.
Therefore, it was first prototyped in the C language ver-
sion of the interpreter, which is used when the java g



debugging version of the JVM command is run. Once a
backward branch is detected in a method, the method
is compiled the next time it is called.

Measurements of this scheme against the default scheme
for the SPEC JVM98 benchmarks showed that the best
times of each were very close. However, there was more
variability from run to run in these times, possibly be-
cause the larger code of the C interpreter was subject
to more cache effects, and the slower default times were
worse than the slower backward-branch times. Never-
theless, given that compiled code had more than the
usual advantage over interpreted code in this case, the
lack of consistently superior results for the backward
branch scheme was not encouraging, and the scheme was
not further pursued. (The scheme might have proven
beneficial with some more effort put into it.)

6.4 The “Core classes known to compile”
heuristic

The final idea, and the one of these that was most
explored, is to take advantage of the off-line profiling
data captured by the procedures described in the pre-
vious section. Then, decisions on whether to compile a
method immediately can be made at the beginning of
application execution, based on whether it is “known”
that the method will reach its “crossover point” [13]
where compilation is sure to be beneficial. For exam-
ple, assume that our profiling data indicates that for
a given application or application mix, method X will
execute on average 100 times, and on average it takes
that method 40 microseconds to execute interpretively
and 15 microseconds to execute as generated code (thus
2500 microseconds less overall for generated code), and
that it takes on average 600 microseconds to compile the
method. Compilation is clearly advantageous, and can
be done the first time the method is called, without hav-
ing to wait for it to execute a certain minimum number
of times.

This approach could be taken for all methods in an ap-
plication, but doing so would require a somewhat in-
trusive, user-visible feedback loop between execution,
off-line processing, and subsequent execution. One of
the best things about Java optimization is that it usu-
ally takes place in a completely transparent way to the
user. Thus, this approach was restricted to just pro-
filing Java 2 Standard Edition core library classes that
are used heavily across all applications, meaning those
in the java.*, javax.*, sun.*, and com.sun.* pack-
ages. Since Java applications spend a lot of time in the
core libraries, this seems a good target for optimization.

Off-line UNIX scripts processed the profiling informa-
tion for a given application run and selected those meth-
ods that were “wins.” This information was reformatted
into a file that was opened and read at JIT initialization.
Method names fully qualified by package and class are
often the same for many initial characters, so a length-
segmented list [23] was used as the internal representa-
tion, allowing quick look-up. Methods in the list were
compiled the first time they were executed. Methods not
in the list were treated per the normal default heuristic
(deciding never to compile methods not in the list would
be unwise, as they might execute more frequently than
expected within any particular application).

Results with this approach were mixed. In the case of
the Java 1.3.0 javac command, compilation of the usual
source was 9% faster using this approach. (With javac,
all of the application was subject to this treatment, since
the compiler implementation is within the com.sun.*

namespace.)

In the case of the SPEC JVM98 benchmarks, results
with this approach were generally slightly better, but
by less than 2%, which is within the margin for error for
these measurements.

For the SwingSet2 demo and Tarantella ObjectManager
start-up times, there was no real measurable improve-
ment.12 (As an additional experiment, profiling and
selecting all application methods, not just core library
methods, produced a 3% improvement for the Taran-
tella ObjectManager. This was at the outside margin of
error for the measurement.)

Why was this approach not more successful? One rea-
son is the collected difficulties in producing fine-grained
profiling and timing information for the classic VM.
While the generalized JIT performance characteristics
as shown in Figures 2 through 4 are accurate, for any
individual method the data may be a bit unreliable, thus
undermining the calculation of methods that are known
to be wins to compile. One lesson of this work is that
an accurate profiling has to be designed into a Java VM,
not tacked on afterwards!

But the major reason may just be that there is only
so much improvement that can be gained by selective
compilation heuristics in the classic VM model. After
all, selective compilation by itself does not improve the

12javac was run with a “wins” list from its own profiling. The
other programs were run using the “wins” list from Tarantella
Objectmanager profiling, which was deemed the most typical of
these programs. This work did not get to the question of how best
to merge these lists to produce one to use for all applications.



quality of the generated code, nor does it affect any of
the other performance-sensitive areas of the VM. After
the initial gains brought about by the simple heuristic
combining method times and size is realized, trying to
get additional gains becomes something like trying to
draw water from a stone.

7 Related Work

Selective compilation heuristics have been used in a va-
riety of JIT compiler contexts.

The IBM JIT compiler [17, 18] uses a system based on
the number of times a method executes, modified by de-
tection of loops. An HP JIT for embedded systems [10]
uses an arbitrary (but configurable) “minimum times”
of 2 before compiling. Krintz and Calder use the met-
ric, found by experiment, that the 25% most frequently
executed methods must be compiled to produce opti-
mum performance, and then use profiling data to iden-
tify those 25% with off-line annotations [7]. The LaTTe
JIT did not initially do any selective compilation, but
in later work added one based on the number of times
a method executes [24].

In recent times, JVM optimization has tended towards
more ambitious, dynamic, mixed-mode and adaptive
schemes, such as Sun’s HotSpot [12], IBM’s Jalapeño
[1], and Intel’s Open Runtime Platform [6, 7]. Selective
compilation still plays a role in these JVMs [2], but of-
ten based on live profiling, and with a wider choice of
compilers and optimization levels to be invoked.

8 Conclusions

The work described here shows how adding simple,
transparent selective compilation heuristics to an exist-
ing classical Java JIT compiler can significantly improve
its performance for short- and medium-lived applica-
tions and for start-up time in longer-lived applications.

The strategy used based the decision to compile a
method on how many times the method has executed
so far (a heuristic for how many times the method will
execute for the rest of the application), and on the size
of the method (a heuristic for how long it will take to
both compile and execute the method). Results show
this combined decision strategy is superior to using ei-

ther one individually, to compiling unconditionally, and
to not using the JIT at all.

Profiling investigations produced some counter-intuitive
results (correlation between method size and execution
time is very weak but still necessary to account for).
More complicated selection strategies prototyped either
failed to produce useful performance improvements or
produced only modest and inconsistent gains.

Although more sophisticated performance schemes are
now used by leading-edge Java virtual machines, these
results still have relevance. There are platforms where
adoption of one of the newer virtual machine technolo-
gies is impractical, either for business reasons or due to
a variety of technical obstacles. For example, the clas-
sic VM’s “green threads” implementation option can be
used on platforms which do not provide any threads sup-
port, such as the SCO OpenServer 5 operating system,
whereas most newer VM implementations reply upon
the underlying platform providing support for a “native
threads” implementation.

In such cases, the selective compilation scheme described
here has some distinct advantages. While not com-
pletely straightforward to implement, it is not large is
size (only about 1% of the sunwjit source was modified
or added to, and less than 100 source lines were modified
in the classic VM proper). It treats the rest of the JIT
as a black box, and thus embodies lower risk than, say,
trying to modify the JIT’s code generator to produce
more optimized code. For a system vendor such as SCO
or Caldera, this kind of performance enhancement work
provides a good return for the amount of engineering
time invested.
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